Faster Rates in Regression via Active Learning
نویسندگان
چکیده
This paper presents a rigorous statistical analysis characterizing regimes in which active learning significantly outperforms classical passive learning. Active learning algorithms are able to make queries or select sample locations in an online fashion, depending on the results of the previous queries. In some regimes, this extra flexibility leads to significantly faster rates of error decay than those possible in classical passive learning settings. The nature of these regimes is explored by studying fundamental performance limits of active and passive learning in two illustrative nonparametric function classes. In addition to examining the theoretical potential of active learning, this paper describes a practical algorithm capable of exploiting the extra flexibility of the active setting and provably improving upon the classical passive techniques. Our active learning theory and methods show promise in a number of applications, including field estimation using wireless sensor networks and fault line detection.
منابع مشابه
Exploration of Arak Medical Students’ Experiences on Effective Factors in Active Learning: A Qualitative Research
Introduction:: Medical students should use active learning to improve their daily duties and medical services. The goal of this study is exploring medical students’ experiences on effective factors in active learning. Methods: This qualitative study was conducted through content Analysis method in Arak University of Medical Sciences. Data were collected via interviews. The study started with p...
متن کاملAdaptive Rates of Convergence in Active Learning
We study the rates of convergence in classification error achievable by active learning in the presence of label noise. Additionally, we study the more general problem of active learning with a nested hierarchy of hypothesis classes, and propose an algorithm whose error rate provably converges to the best achievable error among classifiers in the hierarchy at a rate adaptive to both the complex...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملActive Learning for Age Regression in Social Media
Large-scale annotated corpora are a prerequisite for developing highperformance age regression models. However, such annotated corpora are sometimes very expensive and time-consuming to obtain. In this paper, we aim to reduce the annotation effort for age regression via active learning. The key idea of our active learning approach is first to divide the whole feature space into several disjoint...
متن کاملRates of Convergence in Active Learning by Steve Hanneke
We study the rates of convergence in generalization error achievable by active learning under various types of label noise. Additionally, we study the general problem of model selection for active learning with a nested hierarchy of hypothesis classes, and propose an algorithm whose error rate provably converges to the best achievable error among classifiers in the hierarchy at a rate adaptive ...
متن کامل